Controlled ∗ -Operator Frames on Hilbert C ∗ -Modules

نویسندگان

چکیده

In this paper, we study the concept of controlled ∗ -operator frames for space all adjointable operators on a Hilbert id="M4"> C -module H. Also, discuss characterizations id="M5"> and give some properties. Some illustrative examples are provided to advocate usability our results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The study on controlled g-frames and controlled fusion frames in Hilbert C*-modules

Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator on abstract Hilbert spaces. Fusion frames and g-frames generalize frames. Hilbert C*-modules form a wide category between Hilbert spaces and Banach spaces. Hilbert C*-modules are generalizations of Hilbert spaces by allowing the inner product to take values in a C*...

متن کامل

Frames for Hilbert C*-modules

There is growing evidence that Hilbert C*-module theory and the theory of wavelets and Gabor (i.e. Weyl-Heisenberg) frames are tightly related to each other in many aspects. Both the research fields can benefit from achievements of the other field. The goal of the talk given at the mini-workshop was to give an introduction to the theory of module frames and to Hilbert C*modules showing key anal...

متن کامل

Operator-valued Frames on C*-Modules

Frames on Hilbert C*-modules have been defined for unital C*algebras by Frank and Larson [5] and operator-valued frames on a Hilbert space have been studied in [8]. The goal of this paper is to introduce operatorvalued frames on a Hilbert C*-module for a σ-unital C*-algebra. Theorem 1.4 reformulates the definition given in [5] in terms of a series of rank-one operators converging in the strict ...

متن کامل

Controlled *-G-Frames and their *-G-Multipliers IN Hilbert C*-Modules

In this paper we introduce controlled *-g-frame and *-g-multipliers in Hilbert C*-modules and investigate the properties. We demonstrate that any controlled *-g-frame is equivalent to a *-g-frame and define multipliers for (C,C')- controlled*-g-frames .

متن کامل

(C; C\')-Controlled g-Fusion Frames in Hilbert Spaces

Controlled frames in Hilbert spaces have been recently introduced by P. Balazs and etc. for improving the numerical efficiency of interactive algorithms for inverting the frame operator. In this paper we develop a theory based on g-fusion frames on Hilbert spaces, which provides exactly the frameworks not only to model new frames on Hilbert spaces but also for deriving robust operators. In part...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematics

سال: 2021

ISSN: ['2314-4785', '2314-4629']

DOI: https://doi.org/10.1155/2021/5530498